Article 2320

Title of the article



Gudkov Pavel Anatol'evich, Candidate of engineering sciences, associate professor, sub-department of computer aided design systems, Penza State Univeristy (40 Krasnaya street, Penza, Russia), E-mail:
Podmar'kova Ekaterina Mikhaylovna, Candidate of engineering sciences, associate professor, sub-department of computer aided design systems, Penza State Univeristy (40 Krasnaya street, Penza, Russia), E-mail: 

Index UDK





Background. The need to automate the decision-making process on legal issues in various fields of human activity determines the importance of this work. The purpose of the article is to demonstrate a new approach to organizing and structuring legal knowledge using semantic networks.
Materials and methods. The basic methods of knowledge representation are considered. Graph theory as a mathematical apparatus, as well as Text Mining methods for extracting information from text documents were used.
Results. The advantages of semantic networks as a knowledge representation model are shown. An approach to the automated formation of a knowledge base based on legal text documents is presented. An example of its practical application is given.
Conclusions. The described model opens up broad prospects for the automation of legal information processing. The considered approach can be used both for solving frequently encountered practical decision-making legal issues, and for the timeconsuming task of automating the regulatory legal acts examination. 

Key words

knowledge representation model, semantic network, structuring, automating, legal knowledge 

Download PDF

1. Pirbudagova D. Sh. Yuridicheskaya ekspertiza normativnykh pravovykh aktov: uchebnoe posobie [Legal expertise of regulatory legal acts: teaching aid]. 2nd ed., rev. and suppl. Makhachkala: Izd-vo DGU, 2017, 199 p. [In Russian]
2. Verkhoturova Yu. S. Vestnik Buryatskogo gosudarstvennogo universiteta [Bulletin of Buryat State University]. 2012, no. 15, pp. 32–37. [In Russian]
3. Norvig P., Rassel S. Iskusstvennyy intellekt: sovremennyy podkhod [Artificial intelligence: a modern approach]. Moscow: Vil'yams, 2007, 482 p. [In Russian]
4. Morozova V. A., Pautov V. I. Predstavlenie znaniy v ekspertnykh sistemakh: uchebnoe posobie [Knowledge representation in expert systems: teaching aid]. Ekaterinburg: Izd-vo Ural. un-ta, 2017, 120 p. [In Russian]
5. Popov E. V. Ekspertnye sistemy. Reshenie neformalizovannykh zadach v dialoge s EVM [Expert systems. Solving non-formalized tasks in a dialogue with a computer]. Moscow: Nauka, 1987, 288 p. [In Russian]
6. Lor'er Zh.-L. Sistemy iskusstvennogo intellekta [Artificial intelligence systems]. Transl. from French., ed by. V. L. Stefanyuk. Moscow: Mir, 1991, 568 p. [In Russian]
7. Gavrilova T. A., Khoroshevskiy V. F. Bazy znaniy intellektual'nykh sistem: uchebnik dlya vuzov [Knowledge bases of intelligent systems: textbook for universities]. Saint-Petersburg: Piter, 2000, 384 p. [In Russian]
8. Smolin D. V. Vvedenie v iskusstvennyy intellekt: konspekt lektsiy: ucheb. posobie [Introduction to artificial intelligence: lecture notes: teaching aid]. 2nd ed., rev. Moscow: Fizmatlit, 2007, 264 p. [In Russian]
9. Tolok A. V., Davidovskiy M. V. Sistemy proektirovaniya tekhnologicheskoy podgotovki proizvodstva i upravleniya etapami zhiznennogo tsikla promyshlennogo produkta: tr. 14-y Mezhdunar. konf. (CAD/CAM/PDM-2014, Moskva) [Design systems for technological preparation of production and management of stages of the life cycle of an industrial product: proceedings of the 14th International conference (CAD/CAM/PDM-2014, Moscow)]. Moscow: Analitik, 2014, pp. 69–73. [In Russian]
10. Minsky M. A. The Psychology of Computer Vision. Patrick Henry Winston (ed.). McGraw-Hill, New York (U.S.A.), 1975.
11. Feigenbaum E., Avron Barr The Handbook of Artificial Intelligence. Addison-Wesley, 1986, vol. III.


Дата создания: 03.12.2020 13:17
Дата обновления: 03.12.2020 14:40